import clr
clr.AddReference('RevitAPI')
from Autodesk.Revit.DB import *
clr.AddReference("RevitServices")
import RevitServices
from RevitServices.Persistence import DocumentManager
doc = DocumentManager.Instance.CurrentDBDocument

Inputs
elements = UnwrapElement(IN[0])
if not isinstance(elements, list):
 elements = [elements]

aplicit_materials = UnwrapElement(IN[1])
if not isinstance(aplicit_materials, list):
 aplicit_materials = [aplicit_materials]

Recuperer les unites du projet pour les surfaces
try:
 units = doc.GetUnits()
 formatOptions = units.GetFormatOptions(SpecTypeId.Area)
 displayUnits = formatOptions.GetUnitTypeId()
except:
 try:
 units = doc.GetUnits()
 formatOptions = units.GetFormatOptions(UnitType.UT_Area)
 displayUnits = formatOptions.DisplayUnits
 except:
 displayUnits = None

Récupérer les noms des matériaux
aplicit_material_names = []
for mat in aplicit_materials:
 try:
 if isinstance(mat, Material):
 aplicit_material_names.append(mat.Name)
 else:
 mat_elem = doc.GetElement(ElementId(mat)) if isinstance(mat, int) else doc.GetElement(mat)
 if mat_elem:
 aplicit_material_names.append(mat_elem.Name)
 except:
 pass

Extraction des solides
def extract_solids_recursive(geom_element, solids_list):
 if geom_element is None:
 return

 for geom_obj in geom_element:
 if isinstance(geom_obj, Solid) and geom_obj.Volume > 0:
 solids_list.append(geom_obj)
 elif isinstance(geom_obj, GeometryInstance):
 inst_geom = geom_obj.GetInstanceGeometry()
 if inst_geom:
 extract_solids_recursive(inst_geom, solids_list)
 elif isinstance(geom_obj, GeometryElement):
 extract_solids_recursive(geom_obj, solids_list)

Convertion des surfaces en unité projet
def convert_area(area_internal):
 if displayUnits:
 try:
 converted = UnitUtils.ConvertFromInternalUnits(area_internal, displayUnits)
 return round(converted, 6)
 except:
 pass
 return round(area_internal, 6)

Organiser les faces par volume
def get_faces_by_materials(element):
 faces_by_solid = []
 areas_by_solid = []

 try:
 options = Options()
 options.ComputeReferences = True
 options.IncludeNonVisibleObjects = False
 options.DetailLevel = ViewDetailLevel.Fine

 geom_element = element.get_Geometry(options)

 if geom_element:
 solids = []
 extract_solids_recursive(geom_element, solids)

 for solid in solids:
 solid_material_names = []
 solid_areas = []

 for face in solid.Faces:
 face_mat_id = face.MaterialElementId

 if face_mat_id != ElementId.InvalidElementId:
 face_mat = doc.GetElement(face_mat_id)
 if face_mat and face_mat.Name in aplicit_material_names:
 solid_material_names.append(face_mat.Name)
 solid_areas.append(convert_area(face.Area))

 if solid_material_names:
 faces_by_solid.append(solid_material_names)
 areas_by_solid.append(solid_areas)

 except:
 pass

 return faces_by_solid, areas_by_solid

Définition outputs
output_faces = []
output_areas = []

for element in elements:
 element_faces, element_areas = get_faces_by_materials(element)
 output_faces.append(element_faces)
 output_areas.append(element_areas)

Outpouts
OUT = output_faces, output_areas
